Глава 9. ПРЕОБРАЗОВАНИЕ КОМПЛЕКСНОГО ЧЕРТЕЖА

§56. Общие сведения о преобразовании комплексного чертежа

На комплексном чертеже геометрические объекты проецируются так, что многие элементы, составляющие их, например отрезки прямых, углы, плоские фигуры, изображаются с искажением. В то же время при решении многих задач часто возникает необходимость преобразовать комплексный чертеж так, чтобы необходимый элемент расположился параллельно или перпендикулярно одной из плоскостей проекций. Например, необходимо, чтобы отрезок прямой, представляющий собой ребро многогранника, или многоугольник, представляющий собой грань многогранника, расположились параллельно плоскости проекций. В этом случае на эту плоскость они проецируются в натуральную величину.

Решение таких задач в значительной степени упрощается, если интересующие нас элементы пространства занимают частное положение, т. е. располагаются параллельно или перпендикулярно плоскостям проекций. Получающиеся в этом случае «вырожденные» проекции помогают получить ответ на поставленную задачу или упростить ход ее решения. Чтобы добиться такого расположения геометрических элементов, комплексный чертеж преобразуют или перестраивают, исходя из конкретных условий. Преобразование чертежа отображает изменение положения геометрических образов или плоскостей проекций в пространстве. Задача преобразования комплексного чертежа может быть решена перемещением проецирующего тела в пространстве до требуемого положения или изменением в пространстве положения плоскостей проекций относительно геометрического тела. Существует несколько методов решения этих задач. В основном используются способы преобразования чертежа: плоскопараллельный перенос, способ замены плоскостей проекций (см. § 36) и способ вращения.

Так как частных положений у прямых два и у плоскости два, то существуют четыре исходные задачи для преобразования комплексного чертежа:

 

Хостинг от uCoz